Pédagogie Médicale
Volume 22, Numéro 4, 2021
Page(s) 199 - 204
Section Tribune
Publié en ligne 1 décembre 2021
  1. Norman G. May: A month of myths. Adv Health Sci Educ Theor Pract 2018;23:449‐53. [CrossRef] [PubMed] [Google Scholar]
  2. De Bruyckere P, Kirshner P, Hulshof D. Urban myths about learning and education. San Diego (CA): Academic Press, 2015. [Google Scholar]
  3. Norman G. The once and future myths of medical education. J Grad Med Educ 2020;12:125‐30. [CrossRef] [PubMed] [Google Scholar]
  4. Collectif. Medical education mythology. Research, teaching, strategies, assessment, societal matters, practice. Med Educ 2020;54:2‐87. [CrossRef] [PubMed] [Google Scholar]
  5. Frank J. These ideas must die: The zombies of MedEd. In: AMEE Conference, Vienna, 24–28 août 2019, #11 Plenary 4. 2019 [On-line]: [Google Scholar]
  6. Nendaz M, Perrier A. Diagnostic errors and flaws in clinical reasoning: Mechanisms and prevention in practice. Swiss Med Wkly 2012 [On-line]. Disponible sur : [PubMed] [Google Scholar]
  7. Mamede S, Goeijenbier M, Schuit SCE, de Carvalho Filho MA, Staal J, Zwaan L et al. Specific disease knowledge as predictor of susceptibility to availability bias in diagnostic reasoning: A randomized controlled experiment. J Gen Intern Med 2021;36:640‐6. [CrossRef] [PubMed] [Google Scholar]
  8. Mamede S, de Carvalho-Filho MA, de Faria RMD, Franci D, Nunes MDPT, Ribeiro LMC et al. “Immunising” physicians against availability bias in diagnostic reasoning: A randomised controlled experiment. BMJ Qual Saf 2020;29:550‐9. [CrossRef] [PubMed] [Google Scholar]
  9. Mamede S, van Gog T, van den Berge K, Rikers RMJ, van Saase JLC, van Guldener C et al. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. JAMA 2010;304:1198‐203. [CrossRef] [PubMed] [Google Scholar]
  10. Mamede S, Schmidt HG, Rikers R. Diagnostic errors and reflective practice in medicine. J Eval Clin Pract 2007;13:138‐45. [CrossRef] [PubMed] [Google Scholar]
  11. Kämmer JE, Hautz WE, Herzog SM, Kunina-Habenicht O, Kurvers RHJM. The potential of collective intelligence in emergency medicine: Pooling medical students’ independent decisions improves diagnostic performance. Med Decis Making 2017;37:715‐24. [CrossRef] [PubMed] [Google Scholar]
  12. McDonald KM, Matesic B, Contopoulos-Ioannidis DG, Lonhart J, Schmidt E, Pineda N et al. Patient safety strategies targeted at diagnostic errors: A systematic review. Ann Intern Med 2013;158(5_Part_2):381‐89. [CrossRef] [PubMed] [Google Scholar]
  13. Zwaan L, Monteiro S, Sherbino J, Ilgen J, Howey B, Norman G. Is bias in the eye of the beholder? A vignette study to assess recognition of cognitive biases in clinical case workups. BMJ Qual Saf 2017;26:104‐10. [CrossRef] [PubMed] [Google Scholar]
  14. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 1: Origins of bias and theory of debiasing. BMJ Qual Saf 2013;22(Suppl 2):ii58‐ii64. [CrossRef] [PubMed] [Google Scholar]
  15. Kahneman D. Thinking, fast and slow. Reprint édition. New York: Farrar, Straus and Giroux, 2013. [Google Scholar]
  16. Norman G, Sherbino J, Dore K, Wood T, Young M, Gaissmaier W et al. The etiology of diagnostic errors: A controlled trial of system 1 versus system 2 reasoning. Acad Med 2014;89:277‐84. [CrossRef] [PubMed] [Google Scholar]
  17. Sherbino J, Dore KL, Wood TJ, Young M, Gaissmaier W, Kreuger S et al. The relationship between response time and diagnostic accuracy. Acad Med 2012;87:785‐91. [CrossRef] [PubMed] [Google Scholar]
  18. Ilgen JS, Bowen JL, McIntyre LA, Banh KV, Barnes D, Coates WC et al. Comparing diagnostic performance and the utility of clinical vignette-based assessment under testing conditions designed to encourage either automatic or analytic thought. Acad Med 2013;88:1545‐51. [CrossRef] [PubMed] [Google Scholar]
  19. Monteiro S, Sherbino J, Sibbald M, Norman G. Critical thinking, biases and dual processing: The enduring myth of generalisable skills. Med Educ 2020;54:66‐73. [CrossRef] [PubMed] [Google Scholar]
  20. Patterson F, Roberts C, Hanson MD, Hampe W, Eva K, Ponnamperuma G et al. 2018 Ottawa consensus statement: Selection and recruitment to the healthcare professions. Med Teach 2018;40:1091‐101. [CrossRef] [PubMed] [Google Scholar]
  21. Powis D, Munro D, Bore M, Eley D. Why is it so hard to consider personal qualities when selecting medical students? Med Teach 2020;42:366‐71. [CrossRef] [PubMed] [Google Scholar]
  22. Mazer BL. Accepting randomness in medical school admissions: The case for a lottery. Med Teach 2020. [PubMed] [Google Scholar]
  23. Wouters A, Croiset G, Kusurkar RA. Selection and lottery in medical school admissions: Who gains and who loses? MedEdPublish 2018;7(4). [CrossRef] [Google Scholar]
  24. Rees E, Woolf K. Selection in context: The importance of clarity, transparency and evidence in achieving widening participation goals. Med Educ 2020;54:8‐10. [CrossRef] [PubMed] [Google Scholar]
  25. Schwartzstein RM. Getting the right medical students – Nature versus nurture. N Engl J Med 2015;372:1586‐7. [CrossRef] [PubMed] [Google Scholar]
  26. Nendaz M. Medical student selection: The quest for the Grail. Swiss Med Wkly 2021;151:w20467. [PubMed] [Google Scholar]
  27. Abbiati M, Baroffio A, Gerbase MW. Personal profile of medical students selected through a knowledge-based exam only: Are we missing suitable students? Med Educ Online 2016;21:29705. [CrossRef] [PubMed] [Google Scholar]
  28. Dzau VJ, Johnson PA. Ending sexual harassment in academic medicine. N Engl J Med 2018;379:1589‐1591. [CrossRef] [PubMed] [Google Scholar]
  29. Fnais N, Soobiah C, Chen MH, Lillie E, Perrier L, Tashkhandi M et al. Harassment and discrimination in medical training: A systematic review and meta-analysis. Acad Med 2014;89:817‐827. [CrossRef] [PubMed] [Google Scholar]
  30. Irby DM. Excellence in clinical teaching: knowledge transformation and development required. Med Educ 2014;48:776‐84. [CrossRef] [PubMed] [Google Scholar]
  31. Audétat M-C, Laurin S, Dory V, Charlin B, Nendaz M. Diagnostic et prise en charge des difficultés de raisonnement clinique. Guide AMEE no117 (version courte) – Seconde partie : gestion des difficultés et stratégies de remédiation. Pédagogie Médicale 2017;18:139‐49. [CrossRef] [EDP Sciences] [Google Scholar]
  32. Fernandez N, Audétat M-C. Faculty development program evaluation: A need to embrace complexity. Adv Med Educ Pract 2019;10:191‐9. [CrossRef] [Google Scholar]
  33. Pelaccia T, Demeester A, Charlin B, Denef J-F, Gagnayre R, Maisonneuve H et al. Le déploiement de la formation à distance au sein des facultés de médecine dans le contexte de la crise sanitaire liée à la Covid-19 : et après ? Pédagogie Médicale 2020;21:173‐4. [CrossRef] [EDP Sciences] [Google Scholar]
  34. He L, Yang N, Xu L, Ping F, Li W, Sun Q et al. Synchronous distance education vs. traditional education for health science students: A systematic review and meta-analysis. Med Educ 2021;55:293‐308. [CrossRef] [PubMed] [Google Scholar]
  35. Vaona A, Banzi R, Kwag KH, Rigon G, Cereda D, Pecoraro V et al. E-learning for health professionals. Cochrane Database Syst Rev 2018;1:CD011736. [PubMed] [Google Scholar]
  36. Jauregui J, Watsjold B, Welsh L, Ilgen JS, Robins L. Generational “othering”: The myth of the millennial learner. Med Educ 2020;54:60‐65. [CrossRef] [PubMed] [Google Scholar]
  37. Martimianakis MAT, Tilburt J, Michalec B, Hafferty FW. Myths and social structure: The unbearable necessity of mythology in medical education. Med Educ 2020;54:15‐21. [CrossRef] [PubMed] [Google Scholar]
  38. Sharifabadi AD, Clarkin C, Doja A. Myths in medicine: How did we get here? Med Educ 2020;54:13‐14. [CrossRef] [PubMed] [Google Scholar]
  39. de Bruin ABH. Debunking myths in medical education: The science of refutation. Med Educ 2020;54:6‐8. [CrossRef] [PubMed] [Google Scholar]
  40. Brown J, Nestel D. Theories and myths in medical education: What is valued and who is served? Med Educ 2020;54:4‐6. [CrossRef] [PubMed] [Google Scholar]
  41. Kulasegaram KM, Eva KW. Science must begin with myths, and with the criticism of myths. Med Educ 2020;54:2‐3. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.